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SARS-CoV-2 structural features may explain limited

neutralizing-antibody responses
Martin F. Bachmann1,2,3✉, Mona O. Mohsen2,3, Lisha Zha1, Monique Vogel1 and Daniel E. Speiser 4✉

Neutralizing antibody responses of SARS-CoV-2-infected patients may be low and of short duration. We propose here that

coronaviruses employ a structural strategy to avoid strong and enduring antibody responses. Other viruses induce optimal and

long-lived neutralizing antibody responses, thanks to 20 or more repetitive, rigid antigenic epitopes, spaced by 5–10 nm, present on

the viral surface. Such arrays of repetitive and highly organized structures are recognized by the immune system as pathogen-

associated structural patterns (PASPs), which are characteristic for pathogen surfaces. In contrast, coronaviruses are large particles

with long spikes (S protein) embedded in a fluid membrane. Therefore, the neutralizing epitopes (which are on the S protein) are

loosely “floating” and widely spaced by an average of about 25 nm. Consequently, recruitment of complement is poor and

stimulation of B cells remains suboptimal, offering an explanation for the inefficient and short-lived neutralizing antibody

responses.
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The immune response to severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection is initiated by innate immune

activation followed by antigen-specific B- and T-cell responses1.
An important mechanism protecting from viral disease is the

presence of virus-neutralizing antibodies, which is similar for
almost all viruses causing acute disease followed by pathogen

clearance. In line with this, all currently available anti-viral vaccines
are primarily aiming at inducing virus-neutralizing antibodies.
Neutralizing antibodies generally block binding of the virus to

cellular receptors. In some cases, neutralizing antibodies may
prevent conformational changes necessary for fusion of the virus

with the cell membrane or proteolytic cleavage. Neutralizing
antibodies against SARS-CoV-2 are directed against the spike (S)

protein, which contains multiple antigenic epitopes in the
receptor-binding domain (RBD) and non-RBD epitopes2. A major

mechanism of neutralization is to block binding of RBD to
angiotensin-converting enzyme 2 (ACE2), the cellular receptor

for the virus. The RBD is localized at the tip of the S protein (Fig. 1).
The receptor-binding motif (RBM) consists of about 70 aa within
the RBD and represents the actual amino acids directly interacting

with ACE2.
Neutralizing antibodies are mostly directed against RBD and, in

particular, RBM3–5. Indeed, RBD-specific antibodies closely corre-

late with neutralization in convalescent sera3,6,7. Although S is
heavily glycosylated, RBD only shows little glycosylation (and one

methylation) and the RBM is non-glycosylated, likely facilitating
protein–protein interactions with ACE2. This may also indicate that

glycosylation of S is probably not the reason for induction of poor
neutralizing antibody responses. S is cleaved by furin and the

serine proteases TMPRSS2 and TMPRSS4, enabling fusion of viral
and cellular membranes, and consequent entry of viral RNA into
the host cell8. This cleavage site may also be a target for

neutralizing antibodies9,10. Overall, the RBD/RBM is the immuno-
logical Achilles heel of the virus. Therefore, the virus may have

evolved strategies to mitigate induction of neutralizing antibodies
against this domain.

DURATION AND QUALITY OF NEUTRALIZING ANTIBODY
RESPONSES TO SARS-COV-2

As for infections with other viruses, COVID-19 patients produce
neutralizing antibodies at lower amounts than non-neutralizing ones.
There is disagreement about the stability of neutralizing antibodies in
COVID-19 patients, with several studies reporting stable persis-
tence11,12, whereas others showing that neutralizing antibodies to
coronaviruses wane relatively rapidly, or appear late and remain at
low titers13–15. Some patients may even lack long-lasting antibo-
dies16. Indeed, there is increasing evidence that protection from
disease can be short-lived: some patients experienced COVID-19
twice within months, proven by a virus-free interval17,18.
Antibody titers generally show an early decay after infection,

because the first antibody wave is based on short-lived plasma
cells19. The second wave of antibodies is produced by more
durable plasma cells20. Therefore, one cannot directly compare
studies that differ in the time points at which antibodies
were measured. In addition, studies differ with respect to
laboratory methods. The “gold-standard,” i.e., neutralization assays
that use live virus requires a safety level 3 laboratory, which is not
always available. Although useful results are obtained by
alternative approaches (pseudotype neutralizing assays or
enzyme-linked immunosorbent assays designed to detect RBD-
specific antibodies), they are less meaningful than the gold-
standard21.
The disagreement about the duration of the neutralizing

antibody response is not surprising, given the lack of long-term
follow up as SARS-CoV-2 has appeared less than one year ago.
Nevertheless, patients with minor or no symptoms often have only
low and short-lived neutralizing antibody responses13,14. In
addition, those patients are frequent in the current pandemic.
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Milder symptoms are observed when viral replication is restricted

to the upper respiratory track. This occurs also in the usually mild

common cold infections caused by the endemic seasonal

coronaviruses, typically during winter and spring time20. For these

viruses, antibody responses that protect from disease are short-

lived14, in the range of 1 year22 or less23, and infections occur

regularly, including re-infections with the same virus15,22,24.
Until last year, there existed only two coronaviruses that

frequently cause severe disease, SARS-CoV-1 and Middle East
Respiratory Syndrome Coronavirus (MERS-CoV). Neutralizing anti-

body responses to SARS-CoV-1 can be measured in most
patients25,26 but may gradually disappear after recovery27. More
is known about the MERS-CoV. This virus keeps on circulating in its
natural hosts, the dromedary populations, and animals may

experience re-infections. The camels have a high seroprevalence
(>90%), but virus transmission is not blocked by previous
infection28.
Different other reasons may hamper the immune response to

coronaviruses, e.g., those concerning the innate immune system,

which is key for early activation of inflammatory cells and
cytokines. SARS-CoV-2 may inhibit dendritic cells29 and interferon
(IFN)-I/III responses30,31. Relatively small percentages of patients
with severe COVID-19 bear various genetic variants that compro-

mise innate immune mechanisms32, in particular, type I IFN
pathways33, or have autoantibodies against type I IFNs34, which
are likely aggravating diseases severity. Regarding T cells, several

studies showed impaired T-cell responses including CD4 helper
and regulatory T cells29,35. This point could be important, as T cells
may contribute to protection from disease, although this is not
proven36. It is also necessary to state that for neutralizing

antibodies, there is currently no proof that they indeed mediate
protection from COVID-19. For most current vaccines, neutralizing
antibodies are considered as correlate of protection from disease,
although they do not necessarily equate to the only mechanism of

protection. Finally, non-neutralizing antibodies such as those that
fix complement on the viral surface or mediate antibody-
dependent cellular cytotoxicity may also play a role, although

this is not yet clear36.
In the following, we propose that structural adaption of the

virus family is co-responsible for the inefficiency of neutralizing
antibody responses to the S protein of SARS-CoV-2, in particular
RBD/RBM.

STRUCTURE FUNCTION CONSIDERATIONS FOR SARS-COV-2

Most viruses have highly organized, repetitive and rigid surfaces37.
Typical RNA viruses cannot build up complex surfaces because of
their limited genome of around 10,000 nucleotides (10 kb). Their
capsid usually consists of multiple copies of only one or two
proteins, often arranged in icosahedral symmetry38, readily and
efficiently inducing neutralizing antibody responses39. As the
vertebrate body is by and large devoid of such extracellular
repetitive and organized structures, the immune system has
evolved to recognize such antigen organization as a pathogen-
associated structural pattern (PASP)40. In the 1970s, it was found
that optimal immune responses are induced by at least 12–16
epitopes spaced by 5–10 nm, called the immunon41. Figure 2A
shows a typical RNA virus, with a diameter of 30 nm and 180
copies of a single coat protein spaced by about 5 nm. Such viral
particles efficiently cross-link B-cell receptors42,43 and are recog-
nized by natural IgM, which induces the classical pathway of
complement activation. This facilitates binding of viral particles to
complement receptors followed by B-cell-mediated deposition on
follicular dendritic cells causing efficient germinal center forma-
tion44. Furthermore, complement-dependent stimulation of CD21
on B cells facilitates induction of long-lived plasma cells, which is
essential for durable antibody responses45. There is a vast
literature confirming these considerations for human vaccines,
where repetitiveness is important for inducing long-lived antibody
responses37,46. Hence, repetitive, rigid structures spaced by
5–10 nm are optimal for complement and B-cell activation,
resulting in durable antibody responses.
Figure 2A outlines the structure of SARS-CoV-2. It is immediately

evident that the structure of this coronavirus is quite different. The
virion has a relatively large body with a diameter of 100 nm (rather
than 30–50 nm). Importantly, the S protein, which has a length of
about 20 nm, is present rather scarcely, floating in a sea of lipid
bilayer. As mentioned above, RBD is sitting at the top of S;
therefore, some 70 nm away from the center. The viral surface
area, in which RBD is moving within a two-dimensional space,
20 nm away from the lipid bilayer, can be calculated as 4 × πr2=
4 × π70 nm2

= ca 62,000 nm2. Assuming an average number of ca.
100 S per virion, each S covers a surface area of about 620 nm2.
This leads to a grid-length of 25 nm, which indicates that S is
spaced by an average of 25 nm (Fig. 2C) rather than the 5–10 nm
needed for optimal B-cell responses. Epitopes spaced by this large
distance in a non-rigid manner are inefficient in cross-linking
B-cell receptors or recruiting natural IgM antibodies, required for

Fig. 1 Structure of SARS-CoV-2. Coronaviruses have their names from the typical spikes which are made of the spike (S) protein that is
inserted in the lipid bilayer membrane of the virus. The receptor-binding domain (RBD) and its receptor-binding motif (RBM) enable
interaction with the cell surface receptor ACE2 mediating entry of the virus into host cells. This can be blocked by neutralizing antibodies.
Therefore, most neutralizing epitopes are located on RBD/RBM. Besides the S protein, SARS-CoV-2 has two further viral surface proteins (not
shown): envelope (E) and matrix (M).
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complement activation and induction of long-live plasma cells.
Hence, SARS-CoV-2 dilutes it’s Achilles heel, RBD on S, in a sea of
lipids and other proteins, avoiding potent neutralizing antibody
responses.
The S protein forms a trimer. Consequently, the RBD will display

three identical epitopes favorably spaced by about 3–5 nm. As
discussed above, three epitopes are, however, not enough to
optimally activate B cells. On the contrary, epitopes occurring in
low numbers inhibit, rather than activate, B-cell responses. Indeed,
Dintzis et al.47 concluded that increasing epitope density in a
molecular structure increases its immunogenicity if the threshold
number of ∼20 is reached. In contrast, increasing the density in a
molecular structure below the threshold number increases its
tolerogenicity47. Thus, trimeric RBD may reduce rather than
increase neutralizing antibody responses.
An additional consideration is the length of the viral genome, as

SARS-CoV-2 is encoded by 30,000 RNA nucleotides rather than the
usually about 10,000 nucleotides seen for most other RNA viruses.
Indeed, the longer genome of coronaviruses includes an RNA
proofreading system, required for keeping the viral population
viable based on sufficient genome stability48. Hence, in contrast to
other RNA viruses, coronaviruses can build up relatively complex

surfaces that allow evasion from immune recognition as a PASP
and induction of enduring neutralizing antibody responses.
Besides the non-enveloped viruses, also many enveloped

viruses (Influenza, Rabies, Sindbis, and Vesicular Stomatitis
Virus) display highly immunogenic antigen arrays. Lytic viruses
generally induce potent antibody responses and produce
serotypes37. A notable exception were adenoviruses, which,
similar to SARS-CoV-2, are lytic but also do not form serotypes.
Parallel to coronaviruses, adenoviruses also dilute out the
neutralizing epitopes on the surface of the virion thereby
apparently avoiding stringent long-term neutralization (hence,
no serotype formation). Similar to coronaviruses, adenoviruses
have a proofreading replication system, as they are DNA viruses49.
Hence, the presence of proofreading may allow viruses to escape
immune recognition as a PASP.
We have previously discussed37 that viral structure predicts host

antibody responses and serotype formation. An interesting
observation was that viruses with highly organized and rigid
surfaces induce T-cell independent antibody responses and form
serotypes, whereas viruses with a less rigid structure avoid potent
antibody responses and do not form serotypes. However, the
“dilution” of the neutralizing epitopes performed by coronaviruses,

A B C

D E

Fig. 2 Distances between neutralizing epitopes. A An example of a classical RNA virus with a capsule made of multiple copies of only
one protein that are rigidly structured, displaying highly immunogenic repetitive neutralizing epitopes spaced by 5–10 nm. This virus is
built with 180 monomers and has a total viral diameter of 30 nm. B, C A coronavirus with its S proteins, showing the distance of the
neutralizing epitopes of about 25 nm, which is large and unfavorable for triggering antibody responses. D, E A virus-like particle (VLP)
built by a viral protein into which the RBM of SARS-CoV-2 is genetically inserted. This VLP displays the neutralizing epitopes with an
optimized spacing of 5 nm.
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as described in this study, is a unique strategy in the world of
RNA viruses.

IMPLICATIONS FOR VACCINE DESIGN

If the inefficient and short-lived neutralizing antibody responses
induced by SARS-CoV-2 are indeed caused by the unusually
large distance between neutralizing epitopes embedded in a
fluid membrane, this has important implications for vaccine
design. Specifically, by simple genetic extraction of RBD or RBM
from SARS-CoV-2 followed by grafting onto highly repetitive and
immunogenic nanoparticles or virus-like particles (VLPs), one
may render the poorly immunogenic RBD/RBM into a highly
immunogenic version of it (Fig. 2D), with high numbers of
accessible epitopes at optimal distancing (Fig. 2E). Indeed,
chemical coupling or conjugation by the Spy-Catcher or similar
methods of RBD to VLPs results in highly immunogenic vaccine
candidates that stimulate production of high levels of neutraliz-
ing antibodies in test animals50,51. An alternative strategy, which
facilitates large scale production, is represented by genetic
fusion of RBD/RBM onto VLP-surfaces. Such approaches may
represent attractive options that we and others are currently
following50,52,53.

CONCLUSION

SARS-CoV-2 induces inefficient neutralizing antibody responses
that are short-lived. In contrast to the other RNA virus families,
which display arrays of neutralizing epitopes spaced by 5–10 nm
in a rigid manner, SARS-CoV-2 displays a low number of
neutralizing epitopes spaced by 25 nm in a non-rigid manner, as
the S protein is embedded in a fluid membrane. Hence, SARS-
CoV-2 escapes an efficient neutralizing antibody response by
structurally avoiding immunogenic display of its neutralizing
epitopes.
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